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RATE COMPLEMENTARY ENERGY PRINCIPLES ;
FINITE STRAIN PLASTICITY PROBLEMS; AND FINITE ELEMENTS

Satya N. Atluri
School of Engineering Science and Mechanics /
Georgia Institute of Techno logy
Atlanta, Georgia 30332, USA

ABSTRACT:

Complementary energy theorems, for the rate problem of finite strain c¢las-
sical elasto-plasticity, in both Updated and Total Lagrangean rate forms with
alternate stress-rates and conjugate measures of strain rate, are studied from
the point of view of their application in finite element schemes. Two new
complementary theorems, in Updated and Total Lagrangean forms respectively,
are proposed. The relative merits of these in application to finite-gtrain
elasto-plastic stress analysis, in the treatment of near-incompressibility at

large plastic flow, and in treatment of buckling problems, are briefly discusged.




1. COMPLEMENTARY PRINCIPLES IN UPDATED LAGRANGEAN (UL) FORM: RATE PROBLEM OF
FINITE STRAIN CLASSICAL EIASTO-PIASTICITY:

In this case, the current state CN

ordinates of a particle are y‘;_ and the true (Cauchy) stress is LN, is used as a

» Wherein the cartersian spatial co-

reference state for measuring the rates of variables, in going from CN to CN_'_1

*
If g is the corotational rate of Kirchhoff stress g (5 J1; J is the deter-

minant of the Jacobian);

UL spin rate {= 1/2 QV_NE - (ZN_g)]}, y_N the gradient operator in G (= e 3(C )/

£ is the UL strain rate {= 1/2 [(VN_Q) + (V_N_l:l,)'r]}; & the
T

3yl:); _1_'1_ is the rate of displacement; g and i:,, respectively, are the rates of
second and first Piola-Kirchhoff stresses referred to and measured per unit area

of CN; it is well-known that:

*
s'=d-e'.'rN-'rN.é;
~ ~ ~ ~

~ ~

=g -t M- (1.1,2)

~

Art o

Further, from the relation for the Jaumann stress tensor E [1], viz., ' S 1/2

T

[,5 .ata . £T]; we obtain the equation for the UL rate of r as:

y=¢"-1/2¢ .M+ . &  (1.3a,b)

~

=12+ ch+d . TN+ ¢

~

As noted by Hill [2], the constitutive equation of a bilinear form, for work-

*
hardening elastic-plastic materials, in terms of g and s can be written as:
* ' o
g = av/ag; vVv=1l/2L

o 2
15158k T g Prabicd) (1.4a,b)

Where Lijkz’ o, g, and >‘k£ are as defined in [2]. From Eqs. (1.1-1.4) it is seen

that,
s=aupg;w=V-1": € .¢) (1.5a,b)
t=a0pgt; G=v-2N @€ .o+ M @ o (1.6a,b)
E=3Q/¢; =V - (/2 € . &) (1.7a,b)

where é = (Y u) . It can then be shown [3,4] that the UL rate form of a com-




stationarity condition of the functional,

fagw = [ ($7@) - wa™ (@D . PoMlev+ [ il des (1.8)
! B E.u

N sun
with the a priori constraints:
Linear Momentum Balance (IMB): gN . 08 +LN 2 (ZN_\_';_)] + pN_é =0 (1.9)
Angular Momentum Balance (AMB): § = éT (1.10)
* £ s
Traction Boundary Condition (TBC): n . [i +LN ~ QNu)] =t=rtats  (l.11)
N
ok
and S 1is pressumed to be obtained through the contact transformation,
% 3 ° >
s (8) =£:£ - W(E) (1.12)

and with the Euler-Lagrange Equations (ELE) and Natural Boundary Conditions (NBC):
(1) compatibility, & = 1/2 [(ZN_Q) + (_YNQ)T] and (ii) Displacement B.C (DBC),

u =:|:l at SuN. The constraint, of TBC is, in general, impossible to satisfy a
priori; whereas, it may, in some special circumstances, be possible to satisfy

'I’N.

. (@)

the constraints (1.9 and 1.10). For instance, first noting that é +

= t, one may assume a t that satisfies LMB ZN. t+ pN_B_ = 0 (by setting t = VN x!(yN)
+_5p where .sp is any particular solution such that gN .£p= -pué) and also assume an
arbitrary but symmetric'é field that hence obeys the AMB condition. One can then

eliminate displacements from Eq. (1.8) by settiﬁg
y_“_ﬁ = (,1;“)'1 . [g“ x ¥+ tP . §) (1.13)
Thus, provided that the principal values of LN are not zero (which is a rather

special circumstance) one can express Eq. (1.8) in terms of stress-rates only.

On the other hand one can start out assuming U and then set,

. N.
$ = curl curl A + &P; where _V_N . sP = -pNB - ZN . [LN . (W] (1.14)

where A are the well-known Maxwell-Morera-Beltrami stress functions and ép

is any symmetric particular solution, such as, for instance, given by:

é?j = 0 (i#)); él;i = J‘yiN[-pNﬁi - (Tkjﬁi;j);k] dyt: (no sum on i) (1.15)

3
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However the question of completeness of_ép (or the consquences of a priori set-

ting P = 0, i # j) remains to be answered. Moreover, assuming both § and G
1)

as above has the less desirable consequence that the displacements derived from

strain-integrals corresponding to the assumed stresses do not, in general,

agree with the assumed displacements. Lastly, one can first assume u and

then let,

§ = curl curl A -I;.N % (y_N_Q) + &P; y_N a :gp = -pNé (1.16)

~

However, the chosen g above ceases to be symmetric and the AMB is violated.
Eventhough the representations as in Eqs. (1.14,15 & 16) appear to be less
than desirable in general, use of such have been made in structural mechanics

of curved beams and shells, and their stability, in [5,6].

On the other hand, an alternate general variational theorem, with‘é,.é,
and U as variables, can be stated [3,4] as the condition of stationarity of

the functional:

O . o e . = . = o o &
Mg B ) [ 1@ -pB . g+ £ (@D - Glav-[ Eids - [ £ @D &
N ON UN
(1.17)
which leads to the following ELE and NBC:
N N..T .=
(LMB): V" . t+pB=0; (CC): &= (Lw"; (DBC): 4 =uats$ ((1.18,19 & 20)
e  + é
e <. iy Xy G ™ ), : <8
(RCL): 265 = BU/2&,; = (Lyypy = 5 My hug) 2 = (e * St)T g
A T (1.21)
1203 ~ e
. . * $ -
as): @ .1+ E=snM; (TBC): £=(n . E) =tats, (1.22 & 23)

N
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The AMB, Eq. (1.22), is, however, embedded in the structure of U when U is
defined according to Eq. (1.6b). It is also noted that the RCL, Eq. (1.21),
cannot, in general, be inverted analytically. Assuming that Eq. (1.24) can be
inverted numerically, one can achieve a contact transformation, 'éT: ‘3':. - U
@ = %'(é). 1f, further, one satisfies a priori the Eqs. (1.18 & 23), one
obtains a complementary energy principle governed by the stationarity of:

28 =I’ T (t) av +£ £.uds (1.24)

N uN

which has, as its ELE and NBC, Eqs. (1.19 & 20). This principle was first
stated by Hill [7]). However, the AMB condition, Eq. (1.22) is not an ELE. Thus,
for the principle to be valid, the AMB condition, if at all it is met, must
be embedded in the structure of "ft'(’é); ie., "1‘.‘('5) must be such that, ,5 + @%'/ajT)
; LN ='§T +LN y @%'/aj). It can be shown [4] that this is not true in general;

and thus the above is not a valid principle, in general.

To avoid the above difficulties, we transform the functional in Eq. (1.17)

to one with f; U; @; and ¢ as variables. First we note that &=¢ +d; and

N . T

l} = Q + (1/2)TN: @ .d)+1: @ . s). When these substitutions are

made, we rewrite the functional in Eq. (1.17) as:

f’;:w@; 4; €3 8) = [ {Q+ (1/2)LN: @T . 9) +LN: @T 8y - oNB.a +
\
N .
+ 85 [T -¢-@llav -] t.ads - E. (@ - wds (1.25)
s s
N N

With the constraint that & must be skew-symmetric. The stationarity of the

above functional leads to the ELE and NBC:

(RCLY~ 3Q/3¢ = (1/2)(E +% - @+ &% 1" + £0) = £ (1.26)
N . . o
(WM~ 9" . t+p B =0; (BN .G +¢ . 1N+ £ = symm. (1.27 & 28)
% . - <
(ccr (VI“Q_)T =€ +@; (TBC»n .t=tat S, su=uats, (1.29,30 & 31)
N N




It is noted that (AMB) is a clear ELE (corresponding to variation in g’) and
need not be embedded in the structure of Q If we establish the contact trans-
formation, that : € - Q = fl*@) and further if LMB and TBC, Eqs. (1.27 & 30),
are satisfied a priori, we can eliminate U and ¢ as variables from Eq. (1.25)
and obtain the following functional whose stationarity condition leads to a

complementary energy theorem:

Ry R 4 s
@ . @ -7 Blavef @ . ws (1.32)

72(E.0) .\f, (- R"@) + a/ay®
N

* . . 3
Where, by definition, I = 1/2(t +‘_t'T + LN .9+ d)T. ;. ) In the above functional

the constraints are the LMB, Eq. (1.27) (which is easy to meet by setting

ZN x}: + “t.;p; ,EP is any particular solution such that VN . ':t'p = -p“i), and

é =
that ¢ is a skew-symmetric field [which is easy to meet, by setting Wy = -eijkwk']
The ELE and NBC are the AMB, Eq. (1.28); CC, Eq. (1.29); and the DBC, Eq. (1.31).

In as much the constraints in the principle are trivial to be met a priori, and

the AMB is clearly an ELE, the above complementary principle appears to

be the most rational and consistent for practical applications. 1In applying

the above principle in conjunction with a finite element method, the initerelement
traction reciprocity constraint, @* " ’t::,)+ + (B* . ;t')- =0 at p_ ; can be
relaxed'a priori, and enforced through Lagrange Multipliers. 1In doing this,
either the well-known hybrid-stress FEM of Pian or the equilibrium model of F.

de Veubeke can be used.

*It is worth noting that the above principle is valid for both isotropic as well
as anisotropic materials. In the case of isotropy, it can be shown [4] that the
AMB reduces to the constraint: 'rN cb + t is symmetric. However, even for iso-
tropy, it is more convenient to retain thTs AMB condition as an ELE corresponding
to variations in d) Thus, when t (that satisfies LMB), and a skew-symmetric o
are assumed (which, however, need not obey the AMB even for isotropic materials),
the above definition for r should be used to recover the AMB as an ELE for either
isotropic or anisotropic materials.




2. TL RATE COMPLEMENTARY PRINCIPLES: RATE PROBLEM OF FINITE DEFORMATION
ELASTO-PLASTICITY:

In this case, the initial (undeformed) state co is used as a reference
state in all subsequent considerations. Let £N and 3N be the first and
second Piola-Kirchhoff stress tensors in CN as referred to and measured

per unit area in C,; and let ,Sl and s' be the corresponding TL rates; and

let E' be the TL rate of strain. It can be shown that,

E! - 1/2€st +S'T+£'T .SN+3NT i ~e');[wheres' = (Y_O{_DT; £N = (V_OEN)T]
N
=@ T [where ¥ = %M (2.1a,b)
=@Mt . @ T e =@ s T LT 2283
X =1/2[£N .g'+g'T .'gm+£' .gN+gNT .'E'T] (2.4)
§ N_ N N
Further we consider the polar decompositions, F =¢ . (I + h'), where I+ h
!'; ~ ~ ~ ~
1 is called the stretch tensor; and e' =g' . I +bN) +5N . h'. The rigid
rotation tensors satisfy the orthogonality conditions, g_N . SNT = I; and gN .
g'T +g' ’ gm = 0. Because of Eqs. (2.1b & 2) it is seen that ifW is a

potential for £, a potential W' can be derived for s such that, s' =3W/RE'.

Further, because of Eqs. (2.3 & 4) it is seen that:

4

£ =30 U W+ (/2) s (e L eh) ~ (2.5a,b)

' =aQ'/Ah'; Q' = W'(h') + (1/2)s: (b’ . h") | (2.6a,b)

From the above, we obtain the contact transformations, that,

21: E' _wlggl(zl); £|T

~

*
:e' -U' = e TR ~Q =R 2ab,e)

Using procedures analogous to these discussed earlier in connection with the
Ul rates case, and as elaborated in [4]), the TL rate complementary principle
with 3', and 9_ as variables, can be stated as the stationarity condition of:

7




2 : * N =L
e = [ By s ames @ gl - [ e s 2.8)
o Su
P o. o e T o
where, 2' = (Y 0); and with the constraints: (AMB): ’;‘:" =£' ; (IMB): V™ .
{EN 5 S'T +8' . ~NT} +p°§' =0; (IBC): n . {5“ 5 S'T +£' . zNT] =t' =:_t" at

S_ . The ELE and NBC resulting from the stationarity of the above functional

are: CC, Eq. (2.1a); and DBC, u = E ats . The possible ways to satisfy LMB
o

a priori, are: (i) to choose ,5' that satisifes IMB and in addition to choose a
symmetric s', thereby elminate ¢' as a variable, as: EN 3 s'T L ENT it
NB

P yand gt = (g L [ xyL+tP - L BT

- ; ARt o
‘Z XX."'.E.’(Y- ':’: = =p ~ * o~

which requires that the principal values of ’gN be non zero. On the sther hand,
one can choose U in addition to t' that satisfies IMB, and derived s' from
them as: 5' = [y_o X x +£.p - '§N . s:r] 5 @NT):I However, 2' is then unsymmetric
in general ahd hence violates (AMB). In spite of this, there ‘may be situations
in structural mechanics where the above representation may be satisfactory;
however, with the same drawback, as discussed. earlier, in assuming both stresses
and displacements.

It can be shown [6), as in the UL rate case, the TL complementary principle,
analogous to Eq. (1.24), iﬁ terms of £' alone, is invalid in general. Finally,
the TL rate complementary principle for finite strain elasto-plasticity, with

t' and g' as variables, which is the counterpart of that stated in Eq. (1.32),

can be stated as the stationarity of the functional:

nz(g';g') =f {-R*' g')-t'T: L' . (hI‘+,L1N)] - 1/2‘5NT: it . |
\'4

~ ~

o
Q. (1+‘5N)] Java[ e . uas (2.9)
S
u

o
where 5' is defined as in Eq. (2.4), and with the constraints: (i) y_o . .5' +

pog' = 0, which is easy to meet by setting L' = Zo x ¥ +'s'p; (ii) gN . g'T +

a' . gNT = 0 which is also easy to satisfy by writing ' aij(ek) where 8,

8
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are Euler-angles of rigid rotation; and (iii) n . '5' = E at So . The ELE

o
and NBC are (i) AMB~ h' .£N £ gN+ (EN -3- 1) AR .gN+£N = g') is symmetric;

5 N

(1) co» @°») =&’ . @+ 1) +a

.}h' and the TBC. As before, the above
TL rate complementary principle is believed to be the most consistent for
practical application.

The consistent complementary principlés, as stated in Eqs. (1.32 and 2.9)
are useful in (i) obtaining better stress solutions in a numerical analysis of
finite strain elasto-plasticity and (ii) in treating Situations of near in-
compressibility as many arise at large plastic flow and (iii) in analysis of
stability problems. Numerical evidence for (i) and (ii) appears to provided

in the finite elasticity solutions for compressible as well as incompressible

materials reported in[8,9]. In the stability problems, it is seen that the
functional,

¢ * NT

‘;. et any =R @EH+% [ . @+a9]+ /2 o' .o . g

& C ~ ~ V ~ '~ ~ ~ ~ ~ ~

i o

. @+ hMH]l}av : (2.10)

with the constraints v° . t'=0, gN . g'T+g" . gNT = 0; and g_ - ';té' =0 at S

# o
attains a zero stationary value at neutral equilibrium. In an FEM procedure

this translates into the criterion that the current stiffness matrix becomes singular.

If the prebuckling state, say Co, is lincar, one can make the usual approxima-

tions: h = 0; @ = I; and x' = 1/2(t' +‘5'T +g'T . 50 +‘£° . 2"); and Eq. (2.10)
becomes,

¢sz(t|.a,l) =J" {E’i' 1 |T ' OT

e & A EreE™ &'+ (WD &' g’y (2.11)

o
o i Ly
with the constraints g' -8 % t'=0;n.t'=0at Sy » and thus leads
o

to an eigin value problem.
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